Wool Technology and Sheep Breeding Volume 44, Issue 1 1996 Article 2 # Using industry-recommended Merino link sires to benchmark on-farm performance. DJ Cottle* J Hickson[†] † ### Using Industry-Recommended Merino Link Sires to Benchmark On-Farm Performance David J. Cottle and J. Hickson Dept. Wool and Animal Science The University of New South Wales, Sydney 2052 #### **Summary** A wide cross section of Merino Studs have entered rams in the Merino Central Test sites which have been operating since 1987. Ram breeders can gain access to semen from proven, high quality sires from the Central Test Schemes which can be used to benchmark the performance of their own rams against a wide cross-section of rams evaluated at Central Test sites. Sires above average in performance from each site and year have been selected for benchmarking purposes by the various site management committees. The relative performances of sires used as central link sires or chosen as potential on-farm link/benchmark sires are summarised in this paper and recommended for widespread industry use. Keywords: Link sires, Merino sire evaluation #### Introduction Not all ram breeders are aware that by using semen from a sire that has been progeny tested in one of the 8 central test sire evaluation programs, they can compare the performance of rams they breed or buy with a large cross section of rams in the industry. Any breeder can benchmark their rams by comparing the performance of their progeny with any centrally tested sire's progeny (Atkins 1991). The comparison is more valid if all sires used are given an equal chance to perform, i.e. equal genetic merit of ewes bred to each sire. This is best done by randomly allocating 50-60 ewes from the breeding flock to each sire. The comparative performance should be assessed on the basis of both objective measurements and visual classing of progeny (Kearins and Casey 1991). Assistance with the analysis of results is available if required. A benefit of conducting periodic on-farm comparisons like this is that breeders can determine whether the rams they are using are keeping pace with the rest of the industry, i.e. benchmarking. If some of the rams are objectively progeny tested in more than 1 year (used 2-3 times) it is possible to calculate the actual change in genetic merit in the flock year by year (Atkins 1991). Breeders can then be certain that their flock is heading genetically in the desired direction. After a breeder has decided that they wish to benchmark their home sires against the Central Test Sire Evaluation Scheme they have to choose a centrally tested sire to use. This is not a problem if the breeder has entered a ram in a central test scheme. The breeder can simply use their own tested ram. This is the approach regularly taken by studs such as Wanganella, One Oak and Hazeldean. If a breeder does not have a tested sire available there is a wide choice of sires that could be used. Progeny testing of Merino rams on central test stations started at the UNSW Hay Field Station in 1987 (Roberts et al. 1991). The latest Merino Superior Sires report, covering the results from the last 5 years (Casey et al. 1995), contains the comparative objective measurements and subjective classing results for 123 Medium wool rams and 65 Fine wool rams. Although each year only 10-16 rams are compared directly at any one site, rams can be indirectly compared by the use of common link sires between years and sites. An example of the way the comparisons work is as follows: If ram A progeny had 10% higher fleece weight than Ram B progeny at Hay in 1991 (after correcting for birth status, sex, number of progeny and heritability) and Ram A progeny had 5% higher fleece weight than Ram C progeny at Deniliquin in 1992, indirect comparison suggests Ram C progeny would have 5% higher fleece weight than Ram B progeny. This estimation can be made via the use of Ram A - the central link sire, despite the fact that Ram B and Ram C have not been directly compared at the same site. #### **Recommended Link sires** #### Central Test Site Linkage The link sires used at Central Test sites (as recorded in the CSIRO database) are shown in Table 1. Choice of link sires should be made with a view to which linkages are considered most important, i.e. if Riverina breeders are mainly interested in Riverina and Macquarie tested rams, then these rams should be given preference as link sires. On average, 32% of progeny have been sired by link sires which is close to the theoretical optimum (Ashtiani and James 1991). It would assist the linkage of central test sites if 1 or 2 rams were nominated by the Merino Stud Scientific Liaison Committee at the start of each year for use at all sites. It is also advisable to use some links rams more than twice. As breeders are likely to be mainly interested in the most recent results, not much attention needs to be placed on improving linkages to site/years from more than 5 years ago. | % Link progeny | Total progeny | Woolaroo Blue 237 | Woolaroo Blue 203 | Wanganella 9.3316 | Wanganella 6.598 | Wenganella 6.377 | Sunset 9.14 | Strathcluan W305 | Roseville Park 88 | Roseville Park 44 | Roseville Park 3253 | Roseville Park 0936 | Roseville Park 0133 | Rambouillet 6766 | Pemcaw 6.123 | Parakeelya 141 | One Cak Poll 003 | Nerstane 697 | Nerstane 225 | NRF 6.066 | Mirani 214.5 | Mirani 174.9 | Merignee Brilliant Example 170 | Kurra Wirra G542 | Hazeldean 7.1048 | Hazeldean 6.40 | Hazeldean 4.139 | Catho San Bloo | Grass Sirius 6.1 | Europambeia 8742 | East Roseville 3178 | Darajohn Red | Cranmore Park 7.1 | Cranmore Park 6.5 | CSIRO 91A0619 | CSIRO 89L8484 | Cooning 8.82 | Boolading 373 | Auchen Dhu Red 13 | | Sire | |----------------|---------------|-------------------|-------------------|-------------------|------------------|------------------|-------------|------------------|-------------------|-------------------|---------------------|---------------------|---------------------|------------------|--------------|----------------|------------------|--------------|--------------|-----------|--------------|--------------|--------------------------------|------------------|------------------|----------------|-----------------|----------------|------------------|------------------|---------------------|--------------|-------------------|-------------------|---------------|---------------|--------------|---------------|-------------------|--------------|-------------| | 21 | S | | | | | | | | | | | | | | | | | | | ಚ | | | | | | | × | | | | | ಪಿ | | | | | | | | 1980 | | | 88 | 466 | | | | | 8 | | 8 | | | | | | | | | | | | 22 | | | | | | | 8 | | | | | | | | | | | | | 1990 | HWY | | 38 | 231 | | | | 8 | | | | | | | | | | | | | | | 35 | | | | | | | 8 | | | | | | | | | | 17 | | | 1991 | L | | 43 | ě | | | | 8 | ⋾ | | S | | | | | | | | | | | | 3 | | | | | | | 6 | | | | | 88 | | | | | | | | 1989 | | | 8 | ž | ð | × | | | | | 쓩 | 13 | | | | | | | | | | | a | | | | | | 8 | ± | | 쓢 | | | | | ᆄ | | | | | | 1990 | | | æ | ž | | | | 8 | | | | | | | | 27 | | | | | | | ಜ | | | | | | | 88 | | | | | | | | | | | | | 1991
1 | Deligion | | â | Ŕ | | | 8 | 2 | | | | | | | | | | | | \$ | | | | | | | | | 쓩 | | | | | | | 8 | | | | | | | 1992 | 5 | | 24 | 3 | | | | 17 | | | | | | 5 | | | | 8 | 1983 | | | 36 | ğ | | | 2 | | | | | | 37 | | | | | ₽ | * | 1994 | | | 13 | ĝ | | | 9 | | | ಕ | *1995 | L | | ᇷ | š | | | | | | | చ | 8 | | | | | | 8 | | | | | | | | | | | | 8 | | ន | | | | | | | | | | | 1980
1980 | | | 29 | ŝ | | | | ß | | | | | | 36 | | 8 | | | | | | | | | | | | | | ಪ | | | | | | | | | | | | | 1991 | DOGU | | 49 | 2 | | | | 3 | | 쓩 | | | | | \$ | | | ક | | | | | | | | | | | 37 | | | | | | | | | | | | | | 1992 | | | 3 | ŝ | | | | 8 | | | | | | | | | | 딿 | | | | | | | | | | | | | | | | æ | | | | | | | | | 1984 | | | 23 | ğ | L | | | | | | | | | | 8 | | | | | # | 8 | | | *1995 | L | | 8 | Ę | | | | | | | | | | | | | | | * | | | | | | | | | | 8 | | | | | | | | ಜ | | | | 8 | | 1983 | TANGBUCK | | 88 | ٤ | L | 3 5 | | | | | | | ಜ | | | | , | 82 | | 1994
4 | ٤ | | 31 | ă | L | 8 | | | | | | | | | | | | | | | 83 | | | 24 | | | | | | | 3 | | | | | | _ | | | | | ő | 1990 | L | | 22 | ĝ | | | | | | | | | | | | | | | | | | 8 | | ß | | | | | | | 3 | | | | | | | | | | | ಜ | 8 | AGM CIARING | | B | â | 8 | l | | , | | | | | | | | | | | | | 3 | | | ಜ | | | | æ | | | | | | | | | | | | | | | 1982
2882 | W IC | | 59 | 8 | L | | | | | | | | | | | | 42 | | | | | 33 | | 37 | = | 2 | | | | | | | <u></u> | 8 | | | | 쓩 | 8 | | | | 1993 | | | 88 | ĝ | L | | | | | | | | 3 | | | | | | | | 쓩 | | | 39 | | 27 | | | | | | | | | | | | | | | | | 1994 | | | ű | ŝ | | | | | | | | | | | | | | | | | | 용 | | | 쑴 | | | | | | | | | | | | | | | | | | *1995 | L | | 51 | ē | | | | | | | | | | | | | | | | | 8 | | | 31 | | | ⇉ | க் | | | | | | | | | | | | | | | 1992 | Demilion | | 2 | 3 | | | | | | | | | | | | | 24 | | | | | 23 | | â | | | | | | | | | | ĸ | | | | 2 | ۵ | | | | 1993 | 3 | | 26 | 8 | | | | | | | | | | | | | | | | | ಜ | | | ¥ | | | | | | | | | | | | | | | | | | | 1994
1 | L | | 15 | 2/2 | | | | | | | | | | | 88 | | | | | | | | | | | | 15 | | | | | | | | | | | | | | | | *1995 | Delicina | | | 45 | 12 | | | | | | 8 | | | | | | | | | | *1995 | Complete | | ۴ | ۲ | 1 | | | | à | | | | | | | | | | | ***** | | | | | _ | | _ | | | | | - | | | | | | | | | ***** | | i . | _ | Medium Wool link Sires (EPVs) - Hay (1987-91), Deniliquin (1989-94), Macquarie (1990-1994) and Yardstick (1993-1994). Derived from Casey et al. 1995 Wool Technology and Sheep Breeding, Vol 43 1995 | Sire Breeding | Prog. No | GFW % (dev) | | CFW ' | % (dev) | FD µn | n (dev) | BWT 9 | % (dev) | Tops | % (dev) | Culls | % (dev) | Conf. Qual. | |--------------------------|----------|-------------|--------------|-------|---------|-------|---------|-------|------------------------------|------------|---------|-------------|---------|---| | Identity | Accuracy | 1st | 2nd | | | Auchen Dhu Red 13 | 52 - M | 3.9 | 2.0 | 2.6 | 0.2 | 0.1 | 0.3 | 2.7 | 2.6 | +3 | 0 | | | 8 20 1 7 2 7 1 8 2 1 1 2 8 9 3
2 2 2 2 3 3 4 5 4 5 1 1 2 8 7 3 | | CSIRO 89L 8484 | 29 - M | -0.3 | -2.9 | 0.5 | -2.3 | 0.0 | 0.2 | 1.2 | -0.6 | -3 | +1 | 0 | -2 | | | CSIRO 91A 0619 | 35 - M | -2.9 | -7. 1 | -5.0 | -9.9 | -0.2 | -0.3 | 4.6 | 3.4 | - 2 | 41 | 9 | +3 | | | East Roseville 3178 | 40 - M | 2.1 | 6.9 | -0.2 | 3.7 | -0.5 | -0.3 | 3.4 | 2.4 | -6 | -4 | +1 | +6 | | | Europambela Blue 742 | 41 - M | 2.0 | 1.0 | -1.2 | -1.9 | -0.8 | -0.9 | 0.6 | 0.7 | -2 | -9 | -10 | +3 | | | Grathlyn Super Blue | 46 - M | -2.6 | -4.5 | -2.1 | -5.1 | 1.4 | 1.0 | 0.1 | -0.9 | +2 | +10 | -5 | -6 | + ++ | | Hazeldean 7.1048 | 28 - M | 11.5 | 10.8 | 8.9 | 7.5 | -0.4 | -0.4 | 4.2 | 2.2 | +19 | +4 | -7 | -6 | | | Merrignee Brill. Ex. 170 | 61 - H | -1.3 | -4.4 | -1.9 | -3.4 | -0.0 | -0.1 | -0.0 | -1.3 | -2 | -4 | +2 | +7 | | | Mirani 174,9 | 41 - M | 1.8 | 1.4 | 1.7 | 2.8 | -0.4 | -0.5 | -1.5 | -2.4 | . 0 | -8 | # 11 | -4: | | | Mirani 214.5 | 156 - H | 1.7 | 2.0 | 1.4 | 2.4 | -0.5 | -0.6 | -2.3 | -2.8 | +3 | +5 | -4 | -14 | - ++ | | Nerstane 225 | 63 - H | 17.5 | 16.6 | 17.5 | 17.3 | 0,4 | 0.6 | 3.7 | 4.3 | +37 | +34 | -19 | -19 | | | Nerstane 697 | 88 - H | 11.5 | 15.9 | 10.5 | 16.6 | -0.5 | -0.2 | 0.2 | -2.2 | +22 | +28 | -17 | -17 | ++ ++ | | Roseville Park 44 | 31 - M | 8.3 | | 8.1 | | 0,1 | | 2.5 | 2011 - 100 CONTROL OF STREET | +19 | | -5 | | | | Woolaroo 237 | 29 - M | 3.4 | 6.4 | 1.3 | 2.9 | 0.4 | 0.5 | 2.2 | 2.4 | 0 | -13 | +10 | +7 | | | Woolaroo Blue 203 | 28 - M | 4,4 | 2.9 | 1,5 | 0.6 | 0.1 | 0.1 | 2.3 | 0.6 | ::1 | -2 | +13 | +8 | | #### On-Farm Benchmarking Breeders should choose a sire from a Central Test scheme that is compatible with their breeding objective. Many traits have been assessed on each sires' progeny and breeders can choose sires with desirable characteristics for the traits they are trying to improve. In this way the genetic merits of the Central Test sire's progeny are likely to be greater than that of the home bred sires' progeny leading to increased rates of genetic gain. Overall linkage, in terms of the average prediction error variances of estimated progeny values (James 1994), is improved if a restricted number of link sires are used. If many different sires are used as link sires the percentage of progeny from common link sires over all Central Test and on-farm sites will be less than optimum. The easiest way of choosing a link sire to use for on-farm testing is to use one of the rams chosen by the various sire evaluation committees for linkage purposes. These sires usually have progeny above average on both measurement and visual appeal in their site/year group. Not all sires chosen as link sires (Tables 2 and 3) have been used as central link sires (Table 1) as only 2-3 are needed at each site each year, but all the sires listed are available for on-farm use. The relative performance of recommended link sires are shown in Tables 2 and 3. The values given in the Tables are the estimated progeny values from the 1st (10-16 months of age) and 2nd (17-24 months of age) assessments of progeny. The values are presented as deviations from the relevant base groups. Further details are available in the Merino Superior Sires booklet (Casey et al. 1995). #### Link sire usage Having selected one of these sires it is a good idea to check their performance in more detail by obtaining their site/year reports from the State Stud Associations, UNSW or Advanced Breeding Services. These reports give more details of sires' progeny performance, including staple length, fibre diameter variation, fleece rot score, conformation, pigmentation, wool quality, worm resistance, evenness etc.. Any faults in the ram's progeny should show up in these reports. Not all breeders are concerned by all faults, e.g. breeders in drier areas may not place much emphasis on worm resistance or fleece rot resistance. After consulting the site reports breeders can be confident that apart from the benefit of benchmarking, they will also be introducing genetic material from a proven high performance ram that suits their particular needs. After conducting this on-farm benchmark testing breeders may then consider the final step - putting a home bred ram that has tested better than a link sire into a central test station. Central test Schemes widely publicise and highlight the performance of outstanding sires. It should be remembered that nearly all centrally tested rams are of good standard and to be outstanding amongst centrally tested sires is an achievement. Any breeder can enter a ram into a central test scheme but it is best to notify site Managers as soon as possible as the sites are becoming increasingly well patronised. For example, the Riverina site run by UNSW at Falkiner Memorial Field Station can only test up to 12 rams annually (which requires 24 lambing paddocks for single and twin bearing ewes) and late entries can unfortunately miss a place. #### Conclusion If a breeder wants to be sure they are using rams that are amongst the best available, linkage into the sire evaluation schemes enables them to validly compare their rams with many other high quality rams following methods recommended and approved by both scientists and the State Merino Stud Associations. #### References - Ashtiani, S.R. and James, J.W. (1991) Efficient use of rams in Merino sire evaluation schemes. *Proc. Aust. Assoc. Anim. Breed. Genet.* **9**, 388-391. - Atkins, K. D. (1991) Data processing and linkages within and between sire evaluation schemes. In "Merino Sire Evaluation in Australia" (ed. F.D. Brien) (Wool Research and Development Corporation, Melbourne). - Casey, A.E., Coelli, K. A., Cottle, D.J., Atkins, K.D. and Brash, L. (1995) Merino Superior Sires. ISSN 1323-4609. - Cottle, D.J., Russell, B.C. and Eppleston, J. (1993) Merino sire evaluation central test results 1987-91. Wool Tech. Sheep Breed. 41, 29-36. - James, J.W. (1994) Prediction errors of estimated breeding values in sire evaluation. WoolTech. Sheep Breed. 42, 1-8. - Kearins, R.D. and Casey, A.E. (1991) Data to be collected for on-farm and central test sire evaluations. In "Merino Sire Evaluation in Australia" (ed. F.D. Brien) (Wool Research and Development Corporation, Melbourne). - Roberts, E.M., Atkins, K.D., Cottle, D.J., Eppleston, J, James, JW., Lollback, M., Schumann, W.G. and Reed, P. (1991) A national sire evaluation program. *Wool Tech. Sheep Breed.* **39**, 2-7.